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The rapid growth of China’s manufacturing industry has firmly established the country as a global 

leader in manufacturing and trade. Despite extensive studies on spillover effects within various 

segments of the shipping freight market, a notable gap exists concerning how China’s 

manufacturing sector influences regional freight markets in the dry bulk industry. This study is the 

first in the shipping industry to examine frequency asymmetric spillover effects, both in the long 

and short run, focusing on the impact of the Chinese manufacturing sector (PMI index) on regional 

freight rates (2014-2024, weekly data). Using TVP-VAR and QVAR frequency connectedness 

approaches, our findings reveal strong synchronization between China’s industrial activity and 

regional freight rates. In line with shipping economic theory, the spillover effects of China’s 

industry significantly intensify over the long term. Further, we show that shocks in the recession 

phase of the business and shipping cycles are asymmetric, transmitted more intensively in the long 

run, thus revealing the persistence of macroeconomic disruptions (COVID-19, war in Ukraine, 

energy price crisis). Policy recommendations underscore the structural significance of China’s 

manufacturing sector in regional supply chains. Strategies to enhance resilience include 

diversifying export markets and upgrading logistics infrastructure to mitigate systemic risk s. 

 

 

Keywords: Industrial effects; Asymmetries; China’s PMI; Regional freights; Dry bulk; Frequency 

connectedness.  

JEL Classification : L60; C32; R40; E32 

 

 

 

 

 



3 
 

1. Introduction 

 Industrial performance and industrial policy have always been at the forefront of economic 

activity. The growing impact of China in the maritime sector has led to the need to examine the 

impact of the country’s industry on different aspects of shipping.  According to the Review of 

Maritime Transport 2023 (UNCTAD, 2023) China is the second-largest ship-owning country after 

Greece, followed by Japan (third), while, when considering the value ship , owners in China have 

an 11.04% share of the world fleet, second to Greece with 11.8%. Further, when it comes to the 

shipbuilding industry, China’s share in newbuilding tonnage delivered in 2022 is 47%. Barwich et 

al. (2021) show that China’s shipbuilding policy led to an initial fragmentation and increased 

capacity idleness, but finally, as the government focused on subsidizing the most efficient firms, 

sector’s returns started to increase. Kalouptsidi (2014) estimate the inverse demand curve for 

shipping services and find that the index of world industrial production (WIP) and China’s steel 

production positively affect prices. Further, Barwick et al. (2024) state that as China has become 

the world’s biggest exporter, reductions in shipping costs have largely contributed  to large 

increases in its trade volume. The above findings, stressing the impact of industry on the shipping 

sector, are in line with Stopford’s (2009) theory, who mentions that the world economy is the major 

determinant of the demand function for sea transportation. The impact of the economy on demand 

for sea transportation takes place through business cycles and regional growth trends, thus 

affecting the volume of goods transported by sea. Stopford also states that since world industrial 

production drives a large portion of the demand for commodities traded by the sea, it is anticipated 

that demand for sea transportation is heavily dependent on industrial production. Thereafter, 

demand affects the level of freight rates triggering a process of spillover effects across the other 

shipping markets (secondhand, newbuilding, scrap) as well as of changes in the performance of 

the fleet, leading to further changes in the speed or in the lay-up policy.  

Although the relationship between seaborne trade and the evolution of the world economy 

is expected to be characterized as direct, according to Stopford there are two reasons causing, in 

the long run, the intensity of this relationship to change, due to changes in the trade growth of 

some regions. The two reasons are closely related to the supply and the demand side of the 

economy. First, when it comes to the supply side, because economic structure of some countries 

that affect seaborne trade changes (Europe and Japan in 1960s, South Korea 1990s, China in the 

21st century), causing changes in the demand for bulk commodities. Second, when it comes to the 

https://unctad.org/system/files/official-document/rmt2023_en.pdf
https://unctad.org/system/files/official-document/rmt2023_en.pdf
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demand side, because changes in the growth rates of a regional economy will inevitably lead to 

higher levels of international trade, though growth in exports and imports. Since China has become 

one of the major economies worldwide it is expected that its manufacturing activity, which has 

been ranked first since 2010, will affect global freight markets, in line with Stopford’s theory 

predictions. Despite the anticipated impact of China’s manufacturing sector on the global freight 

rates, only few studies have focus on it (Gu et al. 2020, 2022; Gu and Liu, 2022) and none of them 

on the issue of the impact of China’s PMI index on regional freight markets. 

The innovation of our study is threefold. It is the first to focus on the impact of the Chinese 

manufacturing sector on regional freight rates, by examining frequency asymmetric spillover 

effects, both in the long and short run period. Despite many researchers examined the impact of 

various demand and supply factors on the freight rates of shipping industry segments, there is very 

few research on the impact of the Chinese manufacturing sector on the freight rates (Gu et. al, 

2022; Gu and Liu, 2022) and to the best of our knowledge, the existing literature has not examined 

the impact of Chinese manufacturing industry on regional freight rates . Further, the 

abovementioned research are based on mean estimators, which implies that they cannot consider 

shocks at the tails of the distribution and the results are vulnerable to extreme observations (Ando 

et. al, 2022). Therefore, our second contribution is that we implement the TVP-VAR frequency 

connectedness and QVAR frequency connectedness methodologies. Both methodologies can 

capture shocks to economic activity that have an impact on variables at different frequencies  

(Baruník and Křehlík, 2018). As a result, they are ideal for the shipping sector, where, due to the 

existence of multiple market segments, we are interested in assessing uncertainty due to shocks 

with different persistent levels, both in the short and long run period. Finally, performing QVAR 

frequency connectedness we identify whether short or long run macroeconomic shocks are 

transmitted at higher intensity as well as their persistency, thus revealing possible asymmetric 

behavior. 

According to our results there is a high degree of connectedness between industrial activity 

and regional freight rates in the dry bulk industry, thus providing indications in favor of a linkage 

between China’s business cycles and shipping cycles. In line with the predictions of shipping 

economic theory, we find consistent evidence that Chinese industrial spillover transmission 

intensifies significantly in the long term. Our results indicate robust spillovers in the freight 

resulting from various macroeconomic shocks (pandemic, war in Ukraine, energy price crisis).  
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Negative shocks, namely shocks in the recession phase of the business and shipping cycles, are 

transmitted more intensively in the long run period, reflecting their stronger persistence and the 

long run system's vulnerability, as in the case of COVID-19, war in Ukraine and oil price crisis. 

On the other hand, positive are transmitted more intensively in the short run period, reflecting short 

term market adjustments and interventions of the governments, through fiscal and monetary policy, 

to ease the impact of the negative effects of the pandemic and geopolitical tensions. Further, we 

find strong transmission effects across regional and global freight indices.  

The rest of the paper is organized as follows: Section 2 provides an overview of the relevant  

literature review. Section 3 discusses and analyzes the features of the data. Section 4 presents our 

econometric methodology and Section 5 discusses the empirical results and conducts a robustness 

analysis. Section 6 presents the policy implication and Section 7 concludes.  

 

2. Literature Review 

A large body of the existing literature in maritime economics focuses on the impact of 

various demand and supply factors on the level of the freight rates in different types of shipping 

segments. Some seminal contributions are that of Hawdon (1978), Beenstock (1985), Beenstock 

and Vergottis (1989). The latter developed an econometric model of dry cargo market that 

considers both the freight and the vessels market, thus incorporating the stock flow considerations 

arising from the double nature of the shipowner as a ship and asset manager, assuming rational 

expectations. They examine the impact of bunker costs on the freight rates, as well as on vessels 

prices and fleet size to anticipated and unanticipated bunker price shocks. As Kavussanos (1996, 

2003) and Kavussanos and Visvikis (2006) have shown, the freight rate markets are characterized 

by segmentation and are largely affected by the type and the size of the vessel, as well as by the 

commodity transported, thus leading to corresponding shipping cycles. Tsouknidis (2016) shows 

that, despite segmentation, freight markets are characterized by a degree of connectedness as there 

are spillover effects within and between dry-bulk and tanker freight markets. Of course, the 

industrial and other macroeconomic effects are not the only determinants of the shipping markets.  

Michail and Melas (2022) and Palaios et al. (2024) show that geopolitical events and economic 

uncertainty can have an important impact on the level of freight rates, as well. In a seminal 

contribution, Scarsi (2007) stresses the role of lack of experience, lack of managerial culture, 
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decision making attitude, companies’ structure, imitation and/or emulation to explain shipowners’ 

decisions and their interaction with shipping cycles.  

China has emerged as a major player in the shipping industry. Therefore, Kim (2011) 

examines the impact of Chinese economy on the Baltic Dry Index (BDI), finding a strong linkage 

between them. Drobetz et al. (2012) examine the impact of macroeconomic variables on the 

volatility of the dry bulk and tanker freight markets, using daily Baltic Indices data, covering the 

period 1999-2011. Although they cannot find evidence in favor of asymmetric effects in the dry 

bulk freight market, they find statistically significant effects of macroeconomic variables on the 

BDI. Gu ad Liu (2022) examine mainly the effects of China’s manufacturing industry, through the 

country’s Manufacturing Purchasing Managers’ Index (PMI), on the level of freight rates in the 

dry bulk shipping market. This study is one of the few that discuss the impact of China on this 

market. Their data includes monthly observations during the period 2012-2021 and the 

methodologies applied are VAR and LASSO regressions. Secondarily, they also examine the 

effects of Tianjin Bulk Freight Index (TBI) and of Economic Policy Uncertainty (EPU) on the 

freight level. According to their findings, Chinese PMI affects only freight rates of Panamax and 

Capesize segments of the market, due to the larger vessels used for international trade between 

China, Brazil and Australia. On the other hand, EPU has no important impact on the level of freight 

rates, evidence that can be explained by the fact that China’s EPU considers macroeconomic 

information that has low effect on the bulk shipping market. Gu et al (2020) estimate, using VAR 

methodology, the relationship between Baltic Dry Index (BDI), the Tianjin Shipping Index (TSI) 

and the forward freight agreements, with control on variables of fuel cost and stock markets. Their 

data is weekly covering the period 2012-2018. Their empirical estimations show that in addition 

to its own lagged changes, BDI is subject to the influences of the movements in the FFA market 

and international crude oil prices. On the other hand, the TSI is relatively less influential, mainly 

affected by its own historical values. Further, Gu and et (2021) examining the relationship between 

the Chinese and international shipping market. In doing so they use Tianjin dry bulk index (TBI) 

as an indicator for the Chinese shipping market and the Baltic Dry Index (BDI) which is an 

indicator of internation al shipping market. They collect weekly data during the period 2012 – 

2019, performing VAR regressions. According to their findings, the Chinese shipping market is 

found to be integrated in the global market and even though the impact of the international shipping 
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market on the Chinese one is larger than the opposite, the Chinese economy can exert important 

influence on the global shipping industry. 

Zhang et al. (2015) focus on another important parameter of Chinese influence in global 

shipping industry, namely the development of ports. They present empirical data according to 

which global manufacturing relocation to China’s Western Guangdong province will benefit Hong 

Kong port development. However, to handle more efficiently the competition of other Chinese 

ports, the authors suggest policy directions, such as the redesign of the existing strategy for 

container handling services in Hong Kong port. Further, Zang and Tong (2017), contrary to the 

previous findings, stress the impact of the global shipping industry on China’s economy, rather 

than the opposite. Specifically, they analyze the relationship between Baltic Dry Index and China’s 

GDP, during the period 2000-2015, suggesting that the former is a determinant of the latter, while 

the impact of China’s GDP on BDI is very weak and can be ignored. Gao et al. (2016) examine 

the relationship between China’s GDP and transport freight.  Although this study examines the 

impact transport freight and not just the shipping freights,  the authors mention some special 

economic characteristics of freights in China such as diversity, derivation, timeliness, imbalance, 

antecedence and sustainability that lead to a unique relationship between GDP and transport 

freights. Specifically, they find that while the correlation between the two variables is positive, it 

has changed during the time specifically, during the period 1995-2014 is stronger than that of 1978-

1994, reflecting the improvements in the economy. Therefore, they conclude that different levels 

of economic activity and infrastructure may differentiate the relationship between GDP and 

transport freights.  

According to Stopford’s (2009) theory, the impact of the world economy on demand for 

sea transportation takes place through business cycles, regional growth trends and world industrial 

production which is a major determinant of demand for sea transportation. Therefore, there is a 

strong link between macroeconomic factors and shipping markets, which is translated into a link 

between economic and shipping cycles (Scarsi 2007; Stopford 2009; Karakitsos and Varnavides, 

2014). In this context, Stopford and Barton (1986) examine the impact of oil crisis in 1973 on the 

shipbuilding industry while Guerrero (2014) focusing on containerization argues that maritime 

transport is affected by macroeconomic, technological and political changes taking place 

worldwide. While the synchronization of the economic and shipping cycles is strong across 

different markets and segments of the maritime industry, it is often disrupted by rigidities in the 
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shipping capacity, the volatility of demand and other macroeconomic shocks (Karakitsos and 

Varnavides, 2014). The impact of industry and of other macroeconomic variables such as GDP and 

innovation is expected to be stronger in the long rather in the short run period (Klovland 2002; 

Stopford, 2009; Ferrari et. Al 2018). Drobetz et al. (2012) focus on the impact of various 

macroeconomic factors on the dry bulk and tanker freight rate markets, incorporating asymmetric 

features in their econometric models. Using a large sample, including daily observations, during 

the period from March 1999 to October 2011, they find pronounced asymmetric effects of the 

macroeconomic variables only in the tanker freight market, while when it comes to the dry bulk 

market, they conclude that uncertainty of the market’s participants may lead to positive, negative 

or even no asymmetric effects.  

Despite a substantial body of research has examined the impact of various macroeconomic 

factors on the shipping industry, very limited attention has been given to the relationship between 

China’s industrial activity and regional routes of dry bulk shipping segment and even less research, 

apart from Chen et al. (2024), has captured shocks to shipping economic activity that have an 

impact on variables at different frequencies. Further, none of them has identified whether short or 

long run macroeconomic shocks are transmitted at higher or lower intensity in the shipping 

markets as well as their time persistency, thus revealing possible asymmetric behavior. Our study 

comes to fill the above gaps. 

 

3. Variables selection and descriptive statistics 

In the analysis, weekly Clarksons data over the period February 2014 to August 2024, are 

employed. The choice of the variables aim at capturing the impact of China’s manufacturing 

industry, as indicated by the Manufacturing Purchasing Managers’ Index (PMI), on the freight 

rates of major regional trade routes. Specifically, we employ data (Capesize vessels) for the 

Gibraltar/Hamburg transatlantic round voyage (𝐹𝐺𝑖𝑏_𝐻𝑎𝑚) , the Continent/Mediterranean trip 

China-Japan (𝐹𝑀𝑒𝑑), China-Japan transpacific round voyage (𝐹𝐶𝑛_𝐽𝑝), China-Brazil round voyage 

(𝐹𝐶𝑛_𝐵𝑟), Baltic Dry Bulk Index (𝐵𝐷𝐼) and China’s Manufacturing Purchasing Managers’ Index   

(𝑃𝑀𝐼). Table 1 reports our variables, the routes and the sources. The summary statistics, presented 

in Table 2, show that our data exhibits asymmetric behavior as kurtosis is higher than 3 (leptokyrtic) 

and skewness is higher than 0.5 (positively skewed). To explore the above finding more in detail, 

we also perform the quantile-mean covariance (QC) normality test (Bera et al., 2016) which 
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examines the presence of possible asymmetries. The results, reported in Table 3, indicate an 

asymmetric behavior of all series, as the null hypothesis of normality is rejected for all alternative 

trimming parameter ε and test statistics (𝑇1𝑛 , 𝑇2𝑛, 𝑇3𝑛). Due to the nonnormalities of our data, we 

use relevant econometric techniques in the empirical section, to account for such features.  

 

Table 1: Variables and Sources 

Variable 

 notation 
Routes Description Unit 

𝐹𝐺𝑖𝑏_𝐻𝑎𝑚  

European Routes 

 

BCI C8_14: Gibraltar/Hamburg transatlantic 

round voyage. Weekly frequence 
US dollar/day 

𝐹𝑀𝑒𝑑 
BCI C9_14: Continent/Mediterranean trip China -

Japan. Weekly frequence 
US dollar/day 

𝐹𝐶𝑛_𝐽𝑝 Asian Routes 
BCI C10_14: China -Japan transpacific round 

voyage. Weekly frequence 
US dollar/day 

𝐹𝐶𝑛_𝐵𝑟 
South American 

Routes 

BCI C14: China-Brazil round voyage. Weekly 

frequence 
US dollar/day 

𝐵𝐷𝐼 Global dry bulk index Baltic dry bulk index. Weekly frequence index 

𝑃𝑀𝐼 
China’s industrial 

effects 

China’s Manufacturing Purchasing Managers’ 

Index. Weekly frequence 
Index 

 Note: Data source: Clarksons 

 

 Table 2: Summary statistics and correlation matrix 

 𝐹𝐺𝑖𝑏_𝐻𝑎𝑚 𝐹𝑀𝑒𝑑 𝐹𝐶𝑛_𝐽𝑝 𝐹𝐶𝑛_𝐵𝑟 𝐵𝐷𝐼 𝑃𝑀𝐼 

Minimum -0.7226 -0.2936 -0.4711 -0.6022 -0.2682 -0.0910 

Maximum 2.0907 0.7929 1.2818 1.0562 0.6138 0.1141 

Mean 0.0390 0.0100 0.0267 0.0200 0.0060 0.0000 

Median -0.0058 -0.0097 0.0035 -0.0007 0.0011 -0.0004 

St. dev. 0.3053 0.1385 0.2413 0.2037 0.1038 0.0116 

Skewness 2.0113 1.0542 1.3258 1.2893 0.8478 2.1892 

Kurtosis 7.7881 2.8891 3.8876 4.1621 3.3336 57.7111 

ADF -9.2357*** -8.6189*** -8.8612*** -8.0597*** -7.7595*** -9.2172*** 

Obs. 542 542 542 542 542 542 

Notes: 1) All series are converted into simple return series. 2) *** represents return series are stationary at 1% 

significance level 

 



10 
 

 

Table 3: Quantile-mean Covariance (QC) Normality Test 

  ε=0.001 ε=0.01 ε=0.05 ε=0.10 ε=0.15 ε=0.20 

 

𝐵𝐷𝐼 

𝛵1𝑛 1.0984*** 1.0984*** 1.0984*** 1.0984*** 1.0984*** 1.0984*** 

𝛵2𝑛 1.2065*** 1.2065*** 1.2065*** 1.2065*** 1.2065*** 1.2065*** 

𝛵3𝑛 0.4235*** 0.4188*** 0.3909*** 0.3563*** 0.3208*** 0.2729*** 

 

𝐹𝐺𝑖𝑏_𝐻𝑎𝑚 

𝛵1𝑛 3.1297*** 3.1297*** 3.1297*** 3.1297*** 2.9769*** 2.7413*** 

𝛵2𝑛 9.7947*** 9.7947*** 9.7947 *** 9.7947*** 8.8620*** 7.5146*** 

𝛵3𝑛 2.9480*** 2.9095*** 2.7283*** 2.3725*** 1.9163*** 1.5127*** 

 

𝐹𝑀𝑒𝑑 

𝛵1𝑛 1.7480*** 1.7480*** 1.7480*** 1.7480*** 1.6393*** 1.3333*** 

𝛵2𝑛 3.0556*** 3.0556*** 3.0556*** 3.0556*** 2.6872*** 1.7776*** 

𝛵3𝑛 0.8709*** 0.8612*** 0.7457*** 0.6049*** 0.4703*** 0.3541*** 

 

𝐹𝐶𝑛_𝐽𝑝 

𝛵1𝑛 1.9284*** 1.9284*** 1.8903*** 1.8903*** 1.8903*** 1.8725*** 

𝛵2𝑛 3.7187*** 3.7187*** 3.5731*** 3.5731*** 3.5731*** 3.5062*** 

𝛵3𝑛 1.4282*** 1.4020*** 1.2847*** 1.1657*** 1.0278*** 0.8635*** 

 

𝐹𝐶𝑛_𝐵𝑟 

𝛵1𝑛 2.0774*** 2.0774*** 2.0774*** 2.0774*** 1.7764*** 1.7764*** 

𝛵2𝑛 4.3157*** 4.3157*** 4.3157*** 4.3157*** 3.1556*** 3.1556*** 

𝛵3𝑛 1.4088*** 1.3889*** 1.2569*** 1.0977*** 0.9375*** 0.8178*** 

 

𝑃𝑀𝐼 

𝛵1𝑛 6.6410*** 6.6410*** 6.6410*** 6.6410*** 6.6410*** 6.6410*** 

𝛵2𝑛 44.1025*** 44.1025*** 44.1025*** 44.1025*** 44.1025*** 44.1025*** 

𝛵3𝑛 24.3530*** 24.3352*** 24.3088*** 23.9213*** 22.8199*** 20.9819*** 

    Notes: *, **, *** denote significance at 10%, 5% and 1% level respectively.  

 

4. Econometric methodology 

The empirical methodology is structured as follows: First, we conduct a preliminary 

analysis by examining the dynamic spillover effects, both in the short and long run, using mean 

TVAP-VAR frequency connectedness approach of Chatziantoniou et al. (2023). This method is a 

combination of Baruník and Křehlík (2018) and Antonakakis et al. (2020) approaches1. The main 

advantages of the TVP-VAR based approach are that there is no loss of observations due to the 

setting of the rolling window, it can be used for low frequency and limited time series data and it 

 
1 We perform both short-term (1-4 weeks) and long-term shocks (4 weeks and above). According to BIC criterion the 
optimal lag selection is 5 periods lag. We utilize forecast horizons of 10 and 200 window size for the QVAR. We 
perform regressions using alternative specifications for the forecast horizon and the window size which give 

qualitatively similar results. The results are available upon request. See also Section 5.3 (robustness analysis) 
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is not sensitive to outliers. Second, the analysis of our data has shown that it exhibits asymmetric 

features and non-normality in the distribution. Since the period of our sample is characterized by 

war episodes (Ukraine, Middle East), political disturbances, the pandemic and other 

macroeconomic shocks (e.g. energy shocks) we choose to perform the quantile frequency 

connectedness approach (Chatziantoniou et al. 2022) to account for possible non-Gaussian effects 

and examine in detail the spillover effects transmission mechanism across the distribution of 

China’s industry and the freight markets. Another major advantage of this method is that it is not 

sensitive to outliers. These asymmetric features are also in line with shipping theory which states 

that the synchronization of the economic and shipping cycles is often disrupted by rigidities in the 

shipping capacity, the volatility of demand and other macroeconomic shocks (Stopford, 2009; 

Karakitsos and Varnavides, 2014). The above-mentioned methodologies can capture shocks to 

economic activity that have an impact on variables at different frequencies (Baruník and Křehlík, 

2018). This feature makes frequency connectedness ideal for the shipping sector, where, due to the 

existence of multiple market segments, we are interested in assessing uncertainty due to shocks 

with different persistent levels. 

 

4.1 TVP-VAR - frequency connectedness approach 

 Initially, we perform the TVP-VAR frequency connectedness approach following 

Chatziantoniou et al. (2023). We start our analysis by estimating a TVP-VAR model, as follows: 

𝑦𝑡 = 𝛷𝑡𝑦𝑡−𝑖 + 𝜀𝑡 ,              𝜀𝑡~𝑁(0, 𝛴𝑡)                                                  (1)     

𝑣𝑒𝑐(𝛷𝑡) = 𝑣𝑒𝑐(𝛷𝑡−1) + 𝜈𝑡              𝑣𝑡~𝑁(0, 𝑅𝑡)                                             (2) 

where 𝑦𝑡 , 𝑦𝑡−𝑖  and 𝜀𝑡 are 𝐿𝑥1 dimensional vectors and 𝛷𝑡 and 𝛴𝑡  are 𝐿𝑥𝐿 dimensional matrices, 

representing freight rates of regional routes, BDI and PMI (see Table 1). Further, 𝑣𝑒𝑐(𝛷𝑡) and 𝜈𝑡 

are 𝐿2𝑥1 dimensional vectors and 𝑅𝑡 is a 𝐿2𝑥𝐿2 dimensional matrix. All parameters (𝛷𝑡) and the 

relationship across successive series may vary over time. Following the Wold representation 

theorem the TVP-VAR model is written as: 

∑ 𝑍𝑗,𝑡

∞

𝑗=𝑜
𝜀𝑡−𝑗                                                                                (3) 

where 𝑍0 = 𝐼𝐿 and 𝜀𝑡 is a symmetric, but not orthogonal, vector of white noise shocks, with 𝐿𝑥𝐿  

time varying covariance matrix 𝐸(𝜀𝑡𝜀𝑡́) = 𝛴𝑡 . Consequently, the 𝐻-step forecast error is expressed 

as:  
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𝜉𝑡(𝐻) = 𝑦𝑡+𝐻 − 𝐸(𝑦𝑡+𝐻|𝑦𝑡 , 𝑦𝑡−1, … ) = ∑ 𝑍𝑗,𝑡

𝐻−1

𝑗=0

𝜀𝑡+𝐻−𝑗                            (4) 

The corresponding forecast error covariance matric is: 

𝐸(𝜉𝑡(𝐻)𝜉𝑡
′(𝐻)) = 𝑍𝑗,𝑡𝛴𝑡𝑍𝑗,𝑡

′                                                                (5) 

To trace the impact of a shock arising from variable i to variable j, we follow Koop et al. (1996) 

and Pesaran and Shin (1998) formulating the generalized error variance decomposition (GFEVD) 

as follows: 

𝜃𝑖𝑗𝑡 (𝛨) =
𝐸 (𝜉𝑖,𝑡

2 (𝐻)) − 𝐸 [𝜉𝑖,𝑡(𝐿) − 𝐸 (𝜉𝑖,𝑡(𝐿)) |𝜀𝑗,𝑡+1,… , 𝜀𝑗,𝑡+𝐻]
2

𝐸 (𝜉𝑖,𝑡
2 (𝐻))

            (6) 

=
∑ (𝑒𝑖

′𝑍ℎ,𝑡𝛴𝑡𝑒𝑗)
2𝐻−1

ℎ=0

(𝑒𝑖
′𝛴𝑡𝑒𝑗)∑ (𝑒𝑖

′𝑍ℎ,𝑡𝛴𝑡𝑍ℎ𝑡
′ 𝑒𝑗)𝐻−1

ℎ=0

                                                        (7) 

Therefore, the GVEFD becomes: 

𝜃̃𝑖𝑗𝑡(𝐻) =
𝜃𝑖𝑗𝑡 (𝛨)

∑ 𝜃𝑖𝑗𝑡(𝛨)𝐻
𝑗=1

                                                               (8) 

where 𝑒𝑖  denotes 𝐿𝑥1zero selection vector with unity on its i th position and 𝜃̃𝑖𝑗𝑡(𝐻) represents 

the proportional reduction of the H-step forecast error variance of variable i because of 

conditioning on the future shocks of variable j. Following Diebold and Yilmaz (2009, 2012, 2014), 

as ∑ 𝜃𝑖𝑗,𝑡
𝑔𝑒𝑛(𝛨)𝐻

𝑗=1 ≠ 1, we normalize it to unity by the row sum. Therefore, we get the generalized 

spillover table, 𝑔𝑆𝑇𝑖𝑗,𝑡.  

The total directional connectedness from all other variables to variable i is: 

𝐶𝑖←𝑡
𝑓𝑟𝑜𝑚(𝐻) = ∑ 𝜃̃𝑖𝑗𝑡(𝐻)

𝐿

𝑗=1,𝑖≠𝑗

                                                                 (9) 

The total directional connectedness from variable i to all other variables is: 

𝐶𝑖→𝑡
 𝑡𝑜 (𝐻) = ∑ 𝜃̃𝑗𝑖𝑡(𝐻)

𝐿

𝑗=1,𝑖≠𝑗

                                                              (10) 

The net total directional connectedness of variable i is given as follows: 

𝐶𝑖,𝑡
𝑛𝑒𝑡(𝐻) = 𝐶𝑖→𝑡

 𝑡𝑜 (𝐻) − 𝐶𝑖←𝑡
𝑓𝑟𝑜𝑚

 (𝐻)                                                 (11) 

If (11) is positive (negative), then variable i is a net shock transmitter (receiver), which means that 

variable i acts as an exogenous (endogenous) variable of the network.  
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The corrected total spillover index (TSI) (Chatziantoniou and Gabauer, 2021; Gabauer, 2021) 

which shows the total spillover transmission mechanism across all the variables of our system, 

namely the average total directional connectedness, is given as: 

𝑇𝑆𝐼𝑡 =
𝑁

𝑁 − 1
∑ 𝐶𝑖←𝑡

 𝑓𝑟𝑜𝑚

𝑁

𝑖=1

(𝐻) =
𝑁

𝑁 − 1
∑ 𝐶𝑖→𝑡

 𝑡𝑜

𝐿

𝑖=1

(𝐻)                                     (12) 

The net pairwise directional connectedness, namely the bilateral spillover transmission mechanism 

between variables i and j is calculated as follows: 

𝐶𝑖𝑗,𝑡
𝑛𝑒𝑡(𝐻) = 𝐶𝑖→𝑡

 𝑡𝑜 (𝐻) − 𝐶𝑖←𝑡
𝑓𝑟𝑜𝑚(𝐻)                                                        (13) 

If (13) is positive (negative), then variable i is a net shock transmitter (receiver) to (from) variable 

j, which means that variable i acts as an exogenous (endogenous) variable in its relationship with 

variable j. To explore the connectedness features in the frequency domain we consider a frequency 

response function of the form: 

𝛹(𝑒−𝑖𝜔) = ∑ 𝑒−𝑖𝜔ℎ

∞

ℎ=0

𝛹ℎ                                                              (14) 

Where 𝑖 = √−1  and 𝜔  denotes the frequency to continue with the spectral density of 𝑦𝑡  , at 

frequency 𝜔, which can be defined as which can be defined as a Fourier transformation of the 

TVP-VMA (∞): 

𝑆𝑥(𝜔) = ∑ 𝐸(𝑦𝑦𝑡−ℎ
′ )𝑒−𝑖𝜔ℎ

∞

−∞

= 𝛹𝑡 𝑒−𝑖𝜔ℎ𝛴𝑡𝛹𝑡
′(𝑒+𝑖𝜔ℎ)                         (15) 

Thereafter, we normalize the frequency GFEVD according to: 

𝜃𝑖𝑗𝑡(𝜔) =
(𝛴𝑡)𝑗𝑗

−1 [∑ (𝛹𝑡(𝑒−𝑖𝜔ℎ)𝛴𝑡)
𝑖𝑗𝑡

∞
ℎ=0 ]

2

∑ (𝛹𝑡(𝑒−𝑖𝜔ℎ)𝛴𝑡𝛹𝑡(𝑒𝑖𝜔ℎ))
𝑖𝑖

∞
ℎ=0

                                      (16) 

𝜃̃𝑖𝑗𝑡(𝜔) =
𝜃𝑖𝑗𝑡(𝜔)

∑ 𝜃𝑖𝑗𝑡(𝜔)𝑁
𝑘=1

                                                                     (17) 

where 𝜃̃𝑖𝑗𝑡(𝜔) denotes the portion of the spectrum of the 𝑖-th variable, for frequency 𝜔, due to a 

shock in variable 𝑗2. The corresponding connectedness measures are as follows: 

 

 
2  For evaluating all the short and long run connectedness, all frequencies are aggregated within a specific range,  𝑑 =

(𝑎, 𝑏) : a,b ∈  (−𝜋, 𝜋),𝑎 < 𝑏 , so that: 𝜃𝑖𝑗𝑡(𝑑) = ∫ 𝜃𝑖𝑗𝑡(𝜔)𝑑𝜔
𝑏

𝑎  
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𝑁𝑃𝐷𝐶𝑖𝑗𝑡(𝑑) = 𝜃̃𝑖𝑗𝑡(𝑑) − 𝜃̃𝑗𝑖𝑡(𝑑)                                               (18) 

𝐶𝑖→𝑡
 𝑡𝑜 (𝑑) = ∑ 𝜃̃𝑗𝑖𝑡(𝑑)

𝑁

𝑖=1,𝑖≠𝑗

                                                            (19) 

𝐶𝑖←𝑡
𝑓𝑟𝑜𝑚(𝑑) = ∑ 𝜃̃𝑖𝑗𝑡(𝑑)

𝑁

𝑖=1,𝑖≠𝑗

                                                    (20) 

𝐶𝑖,𝑡
𝑛𝑒𝑡(𝐻) = ∑ 𝜃̃𝑗𝑖𝑡(𝑑)

𝑁

𝑖=1,𝑖≠𝑗

− ∑ 𝜃̃𝑖𝑗𝑡(𝑑)

𝑁

𝑖=1,𝑖≠𝑗

                                      (21) 

𝑇𝑆𝐼𝑡(𝑑) =
𝑁

𝑁 − 1
∑ 𝐶𝑖→𝑡

 𝑡𝑜 (𝑑)

𝑁

𝑖=1

= ∑ 𝐶𝑖←𝑡
𝑓𝑟𝑜𝑚(𝑑)

𝑁

𝑖=1,

                             (22) 

According to Chatziantoniou et al. (2023) the above measurements provide limited connectedness 

information, within the specific range. Therefore, to get the overall impact we weight each of them 

by 𝛤(𝑑) = ∑ 𝜃𝑖𝑗𝑡(𝑑)/𝑁𝑁
𝑖,𝑗=1 . 

 

4.2 QVAR-Quantile frequency connectedness approach  

   To perform the quantile frequency connectedness approach (Chatziantoniou et al. 2022) 

we estimate the following quantile VAR (QVAR): 

𝑦𝑡 = 𝜈𝑡(𝜏) + ∑  𝜉𝑗(𝜏)𝑦𝑡−𝑗

𝑚

𝑗=1

+ 𝑢𝑡(𝜏)                                                      (23) 

Where, 𝑦𝑡 , 𝑦𝑡−1 , 𝑖 = 1, … , 𝑚 are 𝑁𝑥1 dimensional endogenous variables, 𝜏 is quantile, 𝜏 𝜀 [0,1],  

 𝑚 is the lag length and 𝜈𝑡(𝜏) denotes the conditional mean vector. 𝜉𝜄(𝜏) is the 𝑁𝑥𝑁 coefficient 

matrix. 𝑢𝑡(𝜏)  is an 𝑁𝑥1  dimensional error vector. According to Wold’s theorem equation (23) 

becomes: 

𝑦𝑡 = 𝜈𝑡(𝜏) + ∑  𝜓𝑖(𝜏)

∞

𝑖=0

𝑢𝑡−1                                                         (24) 

The corresponding GFEVD is: 

𝜃𝑖𝑗 (𝐻) =
(𝛴(𝜏))𝑗𝑗

−1 ∑ ((𝜓ℎ(𝜏)𝛴(𝜏))𝑖𝑗)
2𝐻

ℎ=0

∑ (𝛹ℎ(𝜏)𝛴(𝜏)𝜓ℎ
′ (𝜏))

𝑖𝑖

∞
ℎ=0

                                     (25) 
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𝜃̃𝑖𝑗(𝐻) =
𝜃𝑖𝑗𝑡(𝐻)

∑ 𝜃𝑖𝑗(𝐻)𝑁
𝑘=1

                                                                   (26) 

The corresponding connectedness measures are as follows: 

 

The total directional connectedness from all other variables to variable i is: 

𝐶𝑖←𝑡
𝑓𝑟𝑜𝑚(𝐻) = ∑ 𝜃̃𝑖𝑗𝑡(𝐻)

𝐿

𝑖=1,𝑖≠𝑗

                                                              (27) 

he total directional connectedness from variable j to all other variables is: 

𝐶𝑖→𝑡
 𝑡𝑜 (𝐻) = ∑ 𝜃̃𝑗𝑖𝑡(𝐻)

𝐿

𝑖=1,𝑖≠𝑗

                                                                 (28) 

The net total directional connectedness of variable i is given as follows: 

𝐶𝑖,𝑡
𝑛𝑒𝑡(𝐻) = 𝐶𝑖→𝑡

 𝑡𝑜 (𝐻) − 𝐶𝑖←𝑡
𝑓𝑟𝑜𝑚

 (𝐻)                                               (29) 

The total connectedness index (TSI), is given as: 

𝑇𝑆𝐼𝑡(𝐻) = 𝑁−1 ∑ 𝐶𝑖←𝑡
 𝑓𝑟𝑜𝑚

𝑁

𝑖=1

(𝐻) = 𝑁−1 ∑ 𝐶𝑖→𝑡
 𝑡𝑜

𝑁

𝑖=1

(𝐻)                                         (30) 

Which shows what is the average impact of a shoch in one variable, on the other variables of our 

system. Thereafter, to explore the connectedness features in the frequency domain we consider a 

frequency response function, as in (14) and a Fournier transformation as in (15). The corresponding 

normalized GFEVD becomes: 

𝜃𝑖𝑗𝑡(𝜔) =
(𝛴𝑡(𝜏))𝑗𝑗

−1 [∑ (𝛹𝑡(𝜏)(𝑒−𝑖𝜔ℎ)𝛴𝑡(𝜏))
𝑖𝑗𝑡

∞
ℎ=0 ]

2

∑ (𝛹𝑡(𝑒−𝑖𝜔ℎ)𝛴𝑡(𝜏)𝛹𝑡 (𝜏)(𝑒𝑖𝜔ℎ))
𝑖𝑖

∞
ℎ=0

                                 (31) 

𝜃̃𝑖𝑗𝑡(𝜔) =
𝜃𝑖𝑗𝑡(𝜔)

∑ 𝜃𝑖𝑗𝑡(𝜔)𝑁
𝑘=1

                                                                 (32) 

The corresponding frequency connectedness measures are3: 

 

𝑁𝑃𝐷𝐶𝑖𝑗𝑡(𝑑) = 𝜃̃𝑖𝑗𝑡(𝑑) − 𝜃̃𝑗𝑖𝑡(𝑑)                                               (33) 

 
3 For evaluating all the short and long run connectedness, all frequencies are aggregated within a specific range,  𝑑 =

(𝑎, 𝑏) : a,b ∈  (−𝜋, 𝜋),𝑎 < 𝑏 , so that: 𝜃𝑖𝑗𝑡(𝑑) = ∫ 𝜃𝑖𝑗𝑡(𝜔)𝑑𝜔
𝑏

𝑎  
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𝐶𝑖→𝑡
 𝑡𝑜 (𝑑) = ∑ 𝜃̃𝑗𝑖𝑡(𝑑)

𝑁

𝑖=1,𝑖≠𝑗

                                                            (34) 

𝐶𝑖←𝑡
𝑓𝑟𝑜𝑚(𝑑) = ∑ 𝜃̃𝑖𝑗𝑡(𝑑)

𝑁

𝑖=1,𝑖≠𝑗

                                                    (35) 

𝐶𝑖,𝑡
𝑛𝑒𝑡(𝐻) = ∑ 𝜃̃𝑗𝑖𝑡(𝑑)

𝑁

𝑖=1,𝑖≠𝑗

− ∑ 𝜃̃𝑖𝑗𝑡(𝑑)

𝑁

𝑖=1,𝑖≠𝑗

                                      (36) 

𝑇𝑆𝐼𝑡(𝑑) = 𝑁−1 ∑ 𝐶𝑖→𝑡
 𝑡𝑜 (𝑑)

𝑁

𝑖=1

= 𝑁−1 ∑ 𝐶𝑖←𝑡
𝑓𝑟𝑜𝑚(𝑑)

𝑁

𝑖=1,

                             (37) 

As in the case of the TVP-VAR frequency connectedness, the above measurements provide limited 

connectedness information, within the specific range. Therefore, to get the overall impact we 

weight each of them by 𝛤(𝑑) = ∑ 𝜃𝑖𝑗𝑡(𝑑)/𝑁𝑁
𝑖,𝑗=1 . 

 𝑁𝑃𝐷𝐶̃𝑖𝑗𝑡(𝑑) = 𝛤(𝑑)𝑁𝑃𝐷𝐶𝑖𝑗𝑡(𝑑)                                                  (38) 

𝐶𝑖→𝑡
 𝑡𝑜̃ (𝑑) = 𝛤(𝑑)𝐶𝑖→𝑡

 𝑡𝑜 (𝑑)                                                             (39) 

𝐶𝑖←𝑡
𝑓𝑟𝑜𝑚̃(𝑑) = 𝛤(𝑑)𝐶𝑖←𝑡

𝑓𝑟𝑜𝑚(𝑑)                                                       (40) 

𝐶𝑖,𝑡
𝑛𝑒𝑡̃(𝐻) = 𝛤(𝑑) 𝐶𝑖,𝑡

𝑛𝑒𝑡(𝐻)                                                          (41) 

𝑇𝑆𝐼𝑡̃(𝑑) =  𝛤(𝑑)𝑇𝑆𝐼𝑡(𝑑)                                                          (42) 

 

5. Empirical Results 

   The empirical analysis has been conducted according to the steps described in Section 4. 

Specifically, we start our analysis by performing TVP-VAR frequency connectedness 

Chatziantoniou et al. (2023) and thereafter we continue with QVAR frequency connectedness 

(Chatziantoniou et al. 2022). 

 

5.1 TVP-VAR, frequency connectedness results 

Table 4 illustrates spillover connectedness effects evaluated at the conditional mean over 

the short and long-term periods. The total connectedness index (TCI) shows that the interaction 

across the variables of our system is more intense in the long run period. Specifically, in the short 

run period, on average, 23.67% of a shock in one variable is transmitted to the others, as opposed 

to the long run where, on average, 36.08% of a mean shock is transmitted to the other variables. 
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China’s manufacturing sector impact on the freight rates of our system follows a similar path. More 

in detail, we observe that in the long run 7.32% of a shock in China’s PMI is transmitted to the 

other freight rates, as opposed to 4.48% in the short run, indicating that the transmission 

mechanism of China’s industrial effects is more intense in the long run period.  

Considering the shock transmission mechanism across the regional freight rate indices, we 

find that the China-Japan round voyage freight (𝐹𝐶𝑛_𝐽𝑝) acts as net receiver (-13.00%) in the short 

run period and net transmitter (5.08%) in the long-term. The China-Japan index indicates the 

highest spillover interaction with China-Brazil freight market (𝐹𝐶𝑛_𝐵𝑟), both over the short and the 

long-term periods. The latter market though initially receives spillover (-0.48%) but remains a 

highest net spillover transmitter in the long run period (5.76%), with its long-term spillover 

transmission being the highest in the network (48.21%). In the short run period BDI index is the 

largest spillover net transmitter (8.46%) as well as notable spillover receivers (5.94%) in the long 

run period. Although the global dry bulk freight index (BDI) initially disseminates significant 

information spillover source (34.98%), its influence fluctuates considerably with variations in the 

China-Brazil and China-Japan freight markets. This finding highlights the critical role of these two 

freight markets in shaping global dry bulk transportation freight rates over extended periods. The 

European freight routes, although Gibraltar-Hamburg (𝐹𝐺𝑖𝑏_𝐻𝑎𝑚) persistently receive spillover (-

018% and -0.32%) both in short and long-term periods, Continent/Mediterranean (𝐹𝑀𝑒𝑑) reveals 

opposite behavior. This freight market transmits spillover (1.83%) in the short-term periods but 

highly sensitive to other freight market’s behavior (-7.27%) over the long-term. Both European 

routes are strong spill providers to the rest variables, but their spillover effects are stronger in the 

long run period, namely 41.84% for the Gibraltar-Hamburg and 37.7% for the 

Continent/Mediterranean route. 
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Table 4: Short and long run average spillover effects evaluated at the conditional mean, based on 

TVP-VAR (frequency connectedness).  

Panel A: Short run spillover connectedness 

 𝐹𝐺𝑖𝑏_𝐻𝑎𝑚 𝐹𝑀𝑒𝑑 𝐹𝐶𝑛_𝐽𝑝 𝐹𝐶𝑛_𝐵𝑟 𝐵𝐷𝐼 𝑃𝑀𝐼 FROM 

𝐹𝐺𝑖𝑏_𝐻𝑎𝑚 13.64 8.27 3.31 5.49 7.79 0.49 25.35 

𝐹𝑀𝑒𝑑 7.77 13.88 3.5 6.6 8.59 0.53 27 

𝐹𝐶𝑛_𝐽𝑝 4.96 5.96 16.79 10.34 9.2 1.39 31.86 

𝐹𝐶𝑛_𝐵𝑟 6.16 7.45 6.59 12.4 9.16 0.83 30.18 

𝐵𝐷𝐼 6.13 6.97 5.13 7.05 11.48 1.25 26.53 

𝑃𝑀𝐼 0.16 0.18 0.33 0.21 0.24 10.44 1.11 

Contribution 
TO others 25.18 28.83 18.86 29.7 34.98 4.48 TCI 

23.67 Net spillover 
effects -0.18 1.83 -13 -0.48 8.46 3.37 
Panel A: Short run spillover connectedness 

 𝐹𝐺𝑖𝑏_𝐻𝑎𝑚 𝐹𝑀𝑒𝑑 𝐹𝐶𝑛_𝐽𝑝 𝐹𝐶𝑛_𝐵𝑟 𝐵𝐷𝐼 𝑃𝑀𝐼 FROM 

𝐹𝐺𝑖𝑏_𝐻𝑎𝑚 18.84 11.27 8.2 11.8 9.86 1.02 42.16 

𝐹𝑀𝑒𝑑 12.96 14.16 8.95 12.32 10.01 0.72 44.96 

𝐹𝐶𝑛_𝐽𝑝 7.33 6.97 14.91 11.26 9.03 1.85 36.44 

𝐹𝐶𝑛_𝐵𝑟 9.94 9.22 12.59 14.97 9.96 0.74 42.45 

𝐵𝐷𝐼 10.97 9.58 10.4 11.92 16.13 2.99 45.86 

𝑃𝑀𝐼 0.63 0.65 1.38 0.9 1.06 83.83 4.62 

Contribution 
TO others 41.84 37.7 41.52 48.21 39.92 7.32 TCI 

36.08 Net spillover 
effects -0.32 -7.27 5.08 5.76 -5.94 2.7 

 

Figure 1 reveals the dynamic evolution of the short and long run total connectedness index 

(TCI), evaluated at the conditional mean. Overall, we observe that the transmission mechanism of 

the long run effects exhibits a twofold asymmetric behavior. First, the long run spillover effects 

are more intense compared to the short run. According to the shipping economic theory (Klovland, 

2002; Stopford, 2009; Ferrari et. al, 2018) the impact of macroeconomic variables on the freight 

markets is more intense in the long run. Therefore, our stronger long run spillovers reflect the 

impact of China’s PMI index and of other macroeconomic shocks like the war in Ukraine, COVID-

19 and the subsequent energy price shocks. Second, we find a major decrease of the short run 

transmission mechanism (TCI index), depicting the impact of the government intervention through 

fiscal and monetary policy to counterbalance the effects of the pandemic and the war in Ukraine 

(Palaios and Papapetrou, 2022; Palaios et al., 2024) Therefore, our results capture a government 

effect on the shipping industry.  
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Figure 1: Time-varying evolution of the short and long run total connectedness index, evaluated 

at the mean, using TVP-VAR, frequency connectedness 

 

Figure 2 depicts the dynamic evolution of short and long run net spillover effects of the 

variables of our system. Overall, the regional freight routes and the Chinese industrial sector (𝑃𝑀𝐼) 

reveal unstable volatility patterns throughout the sample period, with fluctuations reflecting the 

time horizon and macroeconomic shocks (COVID-19, war in Ukraine). The global dry bulk index 

(𝐵𝐷𝐼) and China-Japan (𝐹𝐶𝑛_𝐽𝑝)  freight market reveals sort-term dominance in transmitting and 

receiving volatility and reciprocal behavior in the long-term periods. China-Japan (𝐹𝐶𝑛_𝐽𝑝)  freight 

market receives short-term stable spillover ranges between -5% and 25% however evolves as 

consistent transmitter in the long-term periods. The global dry bulk (𝐵𝐷𝐼) index dominates freight 

market for short-run though receives notable spillover during 2014-2020. This average freight 

index remains as the sole transmitter from COVID-19 onwards in both periods. This finding 

reflects a heightened interdependence between the global dry bulk index and the China -Japan 

freight market over different time horizons.  
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Figure 2: Time-varying evolution of the short and long-run net spillover effects, evaluated at the mean, using TVP-VAR, frequency connectedness 

-15

-10

-5

0

5

10

15

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Short-term net spillover of F_(Gib_Ham)

Long-term net spillover of F_(Gib_Ham)

-30

-20

-10

0

10

20

30

40

50

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Short-term net spillover of PMI

Long-term net spillover of PMI

-30

-20

-10

0

10

20

30

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Short-term net spillover of F_(Cn_Jp)

Long-term net spillover of F_(Cn_Jp)

-30

-20

-10

0

10

20

30

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Short-term net spillover of BDI

Long-term net spillover of BDI

-10

-5

0

5

10

15

20

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Short-term net spillover of F_(Cn-Br)

Long-term net spillover of F_(Cn-Br)

-25

-20

-15

-10

-5

0

5

10

15

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Short-term net spillover of F_(Med)

Long-term net spillover of F_(Med)



21 
 

In the long-term, China-Brazil freight market (𝐹𝐶𝑛_𝐵𝑟) is a stable net spillover transmitter, while 

Continent/Mediterranean (𝐹𝑀𝑒𝑑)  remains as significant net receiver. The Gibraltar-Hamburg 

(𝐹𝐺𝑖𝑏_𝐻𝑎𝑚)  shifts long-term transmission flow from transmitting to receiving spillover after 

COVID-19 outbreak. The most influential and volatile behavior is introduced by Chinese 

manufacturing sector, reaching almost 45% transmission spillovers during COVID-19. In the short 

period the 𝑃𝑀𝐼 is also a consistent shock transmitter, thus confirming the predictions of Stopford’s 

(2009) theory concerning the impact of industrial factors on the shipping markets and the 

subsequent link between economic and shipping cycles (Stopford 2009; Karakitsos and Varnavides, 

2014). In the long run period net transmission alternates with periods during which the 𝑃𝑀𝐼 is a 

net receiver, implying the synchronization between economic and shipping cycles and the 

predominance of other macroeconomic shocks on the freight markets. Further we observe that 

𝑃𝑀𝐼 index is a net spillover provider in each relationship with 𝐵𝐷𝐼, since bulk shipping transports 

raw materials for heavy industry and is therefore expected to be affected by industrial activity 

(Scarsi, 2007). 

Overall, our results are consistent with strong industrial effects of China on the freight 

markets. After COVID-19, the impact of the Chinese manufacturing sector remains relatively 

storng implying resilience, as opposed to the freight markets that were significantly impacted 

during global pandemic periods, underscoring their vulnerability to systemic disruptions. 

Furthermore, a pronounced spillover interaction is evident within regional freight markets during 

periods of oil price shocks, highlighting their sensitivity to energy market volatility and the critical 

role of oil price dynamics in shaping freight market interconnectivity, as well as the 

synchronization between economic and shipping cycles. Finally, we find strong evidence in favor 

of TCI heterogeneity, depending on the period. Specifically, total spillover transmission 

mechanism is much stronger in the longer period reflecting the impact of China’s PMI as well as 

of other macroeconomic shocks (war episodes, pandemic, government intervention) . 

 

5.2 QVAR, Quantile frequency connectedness results 

Table 5 reports the total connectedness of the system, evaluated at the median of the 

conditional distribution (τ = 0.5), based on quantile frequency connectedness approach. The TCI 

index indicates a stable degree of systemic interdependence, with short-term spillover slightly 

increasing, compared to the mean approach, from 23.67% to 29.79% and long-term spillover from 
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36.08% to 36.16%. This stability suggests that policies should focus on addressing specific 

directional changes in spillover dynamics rather than broad systemic risks, especially in contexts 

of evolving economic interdependence. 

 

Table 5: Short and long run average spillover effects evaluated at the conditional median quantile  

(τ=0.50), based on QVAR (quantile frequency connectedness) 

 𝐹𝐺𝑖𝑏_𝐻𝑎𝑚 𝐹𝑀𝑒𝑑 𝐹𝐶𝑛_𝐽𝑝 𝐹𝐶𝑛_𝐵𝑟 𝐵𝐷𝐼 𝑃𝑀𝐼 FROM 

Panel A: Short run spillover connectedness 

𝐹𝐺𝑖𝑏_𝐻𝑎𝑚 13.18 8.15 5.76 7.05 8.64 3.86 33.46 

𝐹𝑀𝑒𝑑 8.77 13.11 6.44 8.3 9.58 4.11 37.2 

𝐹𝐶𝑛_𝐽𝑝 6.72 6.86 14.17 9.39 9.41 4.37 36.75 

𝐹𝐶𝑛_𝐵𝑟 7.54 8.12 7.47 12.48 9.67 4.02 36.82 

𝐵𝐷𝐼 6.89 6.99 5.96 7.3 11.13 3.39 30.53 

𝑃𝑀𝐼 0.67 0.82 0.78 0.84 0.86 4.88 3.98 
Contribution 

TO others 30.59 30.93 26.42 32.9 38.16 19.74 TCI 
29.79 Net spillover 

effects -2.87 -6.27 -10.33 -3.92 7.63 15.77 

Panel B: Long run spillover connectedness 

𝐹𝐺𝑖𝑏_𝐻𝑎𝑚 11.86 9.35 7.57 8.31 7.25 9.02 41.5 

𝐹𝑀𝑒𝑑 7.38 11.84 8.33 7.97 7.19 6.98 37.85 
𝐹𝐶𝑛_𝐽𝑝 5.44 6.94 13.31 8.6 6.98 7.81 35.76 

𝐹𝐶𝑛_𝐵𝑟 6.37 8.05 10.71 11.03 6.93 7.6 39.67 

𝐵𝐷𝐼 7.28 9.41 10.51 9.08 12.19 9.86 46.15 

𝑃𝑀𝐼 2.42 2.79 4.32 3.29 3.24 75.09 16.05 

Contribution 

TO others 28.89 36.53 41.44 37.25 31.59 41.28 TCI 
 36.16 Net spillover 

effects -12.62 -1.32 5.68 -2.42 -14.56 25.22 

 

Notably, the global dry bulk index (BDI) shows a reversal in spillover direction, 

transitioning from a significant transmitter of shocks (7.63%) in the short term to the largest 

receiver (-14.56%) in the long term. Similarly, the Chinese manufacturing sector's (𝑃𝑀𝐼) spillover 

transmission intensifies significantly in the long term, increasing from 15.77% in the short term to 

25.22% in the long term. This emphasizes the structural importance of China’s manufacturing 

sector in global supply chains and calls for policies that enhance resilience to external shocks. 

Strategies could include diversifying export markets and improving logistics infrastructure  to 

ensure the sector's stable growth and mitigate systemic risks.  Regional freight markets also display 
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dynamic spillover tendencies, such as the China-Japan (𝐹𝐶𝑛_𝐽𝑝) route, which changes from the 

greatest net receiver (-10.33%) of shocks in the short term to a net transmitter (5.68%) in the long 

run. This underscores the need for bilateral trade policies that improve freight route efficiency and 

adjust to evolving trade dynamics. Other freight routes, such as China-Brazil (𝐹𝐶𝑛_𝐵𝑟), Gibraltar-

Hamburg (𝐹𝐺𝑖𝑏_𝐻𝑎𝑚)  and Continent/Mediterranean (𝐹𝑀𝑒𝑑)  consistently absorb spillovers but 

exhibit more pronounced long-term effects. Policymakers should prioritize investments in long-

term infrastructure improvements and trade facilitation to address these persistent spillover 

asymmetries. 

Moreover, our dynamic total TCI results reveal significant interactions dominated by long-

term spillover. The short-term and long-term TCI ranges from 10-58% and 0-63% respectively. 

The notable fluctuations, peaked at around 63% are observed during economic or global shocks 

particularly oil price shocks in 2016, US-China trade war in 2018, COVID-19 in 2020, Russia-

Ukraine conflict in 2022.  Most of the shock responses to long-term spillover except during US-

China trade war period. 

The dynamic net spillover effects, evaluated at the mean, reveal similar patterns of 

connectivity (Fig. 4). The freight market between Gibraltar and Hamburg (𝐹𝐺𝑖𝑏_𝐻𝑎𝑚 ) absorbs 

spillover in most of time, but it disseminates significant information spillover (140%) to other 

freight routes during Russia-Ukraine conflict. The Continent/Mediterranean (𝐹𝑀𝑒𝑑) freight market 

changes behavior, becoming the most dominant spillover transmitter during US-China trade 

recession in 2018. The China-Japan freight market (𝐹𝐶𝑛−𝐽𝑝) receives spillover in the short-term 

and transmits spillover in the long-term period. This market shows significant volatility at the end 

of US-China-trade war and during COVID-19 periods. This finding validates that China-Japan 

freight market rapidly adjust with market policy after stress periods. China-Brazil freight market 

(𝐹𝐶𝑛_𝐵𝑟) though exhibits fluctuated behavior, receives spillover in most of the periods. The global 

dry bulk index (𝐵𝐷𝐼) dominates freight routes only in the short-term. On the contrary, China’s 

manufacturing sectors (𝑃𝑀𝐼) transmits spillovers in most of the periods with few exceptions. 

During stress periods, namely after the start of global economic and geopolitical shocks, Chinese 

manufacturing sector is a strong net spills provider. In line with our findings for the mean approach, 

we observe that 𝑃𝑀𝐼 index is a net spillover provider in each relationship with 𝐵𝐷𝐼 (Scarsi, 2007). 

 

 



24 
 

 

 

 

 

 

 

 

 

 

 

Figure 3: Short and long-term TCI spillover connectedness at conditional median quantile  

 

5.2.1 Spillover effects across the distribution 

 To further examine the industrial and freight effects we focus on the behavior of our system 

at the extremes of the distribution. The dynamic quantile connectedness across extreme upper and 

lower quantiles (Fig. 5) reveals that the prominence of short-run and long-run spillover interactions 

depends on the nature, intensity, and persistence of global economic or geopolitical shocks. Short-

term spillovers are more significant during acute, high-frequency events that provoke immediate 

reactions in markets and policy environments. For instance, the 2016 oil crisis and the 2018 US-

China trade war caused rapid shifts in global trade, commodity prices, and investor sentiment, 

amplifying short-term spillovers, as markets adjusted to heightened uncertainty. Such events 

disrupt the markets abruptly, leading to higher short-run volatility and spillover effects across 

interconnected regions or sectors. On the other hand, long-term spillovers become more dominant 

during prolonged or systemic macroeconomic changes, such as global financial crises, shifts in 

monetary policy frameworks, or geopolitical realignments, which slowly reshape the underlying 

structure of economic and financial networks (Klovland 2002; Stopford, 2009; Ferrari et. Al 2018). 
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 Figure 4: Short and long-term net spillover connectedness evaluated at the median (50th quantile) 
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The analysis also highlights the role of the intensity of the shock in differentiating spillover 

behavior. Since the TSI index shows the sensitivity of the variables of our system due to negative 

or/and positive shocks, upper quantiles ( 𝜏 = 0.70, 0.80, 0.90)  correspond to extreme positive 

shocks, namely to shocks leading to the expansion phase of the business and shipping cycles. On 

the other hand, lower quantiles (𝜏 = 0.10, 0.20, 0.30) describe extreme negative shocks, namely 

shocks leading to the recession phase of the business and shipping cycles. The interpretation of the 

relationship between negative (positive) shocks and left (right) tail dependence is in line with Bouri 

et. al (2021) and Ando et al. (2022). Our results, depicted in Figure 5, show that negative shocks 

are transmitted more intensively (higher TSI index) in the long run period, reflecting their stronger 

persistence and the long run system's vulnerability to them, as in the case of COVID-19, war in 

Ukraine and oil price crisis. On the other hand, we observe that the positive shocks ( 𝜏 =

0.70, 0.80, 0.90) are transmitted more intensively (higher TSI index) in the short run period and 

are less persistent in the long run period, reflecting short term interventions of the governments, 

through fiscal and monetary policy, to ease the impact of the negative effects of the pandemic and 

geopolitical tensions. 

Overall, the above econometric results from both the TVP-VAR and QVAR frequency 

connectedness are in line with Bouri et. al (2021), Ando et al. (2022), who also find strong tail 

effects. Additionally, our findings are consistent with Gu et al. (2022), who show that there is a 

significant integration of China in the international shipping market and Gu and Liu (2022), who 

find that Chinese PMI index affects the Capesize segment of international dry bulk shipping market. 

Our results are also in line with the findings of Barwick et al. (2021), who demonstrate strong 

effects of China’s industrial policy in the shipping industry. On the other hand, our results 

contradict Gu et al. (2020) who provide evidence that China has weak effect on the international 

shipping market and Zang and Tong (2017) who stress the impact of the global shipping industry 

on China’s economy, rather than the opposite. Finally, since our QVAR frequency analysis has 

shown that the negative effects are transmitted more intensively and are more persistent in the long 

run period, our results are in line with Tsouknidis (2016) who provided indication that volatility 

spillovers were substantial higher during the negative shock of the global financial crisis.  
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Figure 5: Short and long-term TCI spillover connectedness at various lower and upper quantiles
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5.3. Robustness analysis:  

To ensure the robustness of the time-varying TVP-VAR results, we evaluate the impact of 

varying forecast horizons and lag lengths on spillover connectivity. Specifically, we test forecast 

horizons of 5 and 10, as well as lag lengths of 4 and 6, alongside the original configuration of a 

10-period forecast horizon and a lag length of 5. All other parameters are held constant during 

these evaluations. The outcomes of these robustness checks are presented in Figures. 6–7, where 

short-term spillovers are highlighted in green and long-term spillovers are depicted in blue. 

Notably, checks for varying rolling window sizes were excluded, as the TVP-VAR frequency 

connectedness results are independent of this parameter. The findings show minimal variations in 

spillover results across different forecast horizons and lag lengths. This consistency underscores 

the stability of dynamic spillover patterns across both in the short- and long-term periods, thus 

reinforcing the reliability of the spillover analysis under diverse parameter configurations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Short-term spillover robustness at various lag-length, forecast horizons and window 
sizes 
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Figure 7: Long-term spillover robustness at various lag-length, forecast horizons and window 
sizes 
 

6. Economic and geopolitical implications of China’s rising maritime power 

The policy implications of our empirical results are threefold, exhibiting both econometric, 

economic and political features. First, when it comes to the econometric policy implications, given 

the features of our data and the robustness of our results, it becomes evident that both researchers 

and practitioners in the maritime industry should consider the use of the frequency dynamics 

(Baruník and Křehlík, 2018) in their analysis. The main reason for that is their ability to provide 

powerful insights when assessing shares of uncertainty in various freight rate variables arising 

from macroeconomic shocks with different persistence levels. This feature makes frequency 

connectedness ideal for the shipping sector, where, due to the existence of multiple market 

segments, we are interested in assessing uncertainty due to shocks with different persistent levels. 

   Second, at an economic level, our empirical results concerning the impact of China’s 

industrial activity on regional freight markets should be interpreted in the context of China’s 

industrial policy in the maritime sector. Industrial policy in the shipping  industry is attracting 

increasing attention in parallel with China’s emerge as a major shipping power (Barwick, 2024; 

Folkman 2024; Foroohar, 2024, Evenett, 2024). China is the second largest ship -owning country 
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after Greece, followed by Japan and first when it comes to the value of the vessels (11.04% share) 

and shipbuilding tonnage (47%) (UNCTAD, 2023). This, according to Stopford’s (2009) theory, 

implies that the world’s freight rates should be affected by the country’s industry. Our results 

confirm these theoretical predictions leading to the policy implication that demand for sea 

transportation, as reflected in regional freight rates, is heavily dependent on China’s industrial 

production. Additionally, under median and mean shocks, we find consistent evidence that Chinese 

manufacturing sector's (PMI) spillover transmission intensifies significantly in the long term, 

increasing from 19% in the short term to 41.28% in the long term, which emphasizes the structural 

importance of China’s manufacturing sector in global supply chains and calls for policies that 

enhance resilience to external shocks. Moreover, we find that shocks in the recession phase of the 

business and shipping cycles are transmitted more intensively in the long run period, reflecting 

their stronger persistence and the long run system's vulnerability, as in the case of COVID-19, war 

in Ukraine and oil price crisis. As a result, policymakers should perform strategies that diversify 

export markets and improve logistics infrastructure to mitigate systemic risks. Further, according 

to our findings China’s industrial activity, therefore the country’s business cycles, affects regional 

freight rates, therefore the regional shipping cycles. Consequently, our analysis provides 

indications that regional freight rates and China’s business cycles are synchronized, in line with 

the predictions of Karakitsos and Varnavides (2014).  

   Third, our findings have important policy implications for the nature of the international 

system. Given the fact that China’s industrial policy affects the freight rates on a global scale, we 

have one more evidence in favor of a multipolar international system. In that sense, the big question 

that arises, when it comes to the future world distribution of power, is whether a world with a more 

balanced distribution of maritime power will lead to changes in the consumption of the public 

good called “liberal world economy” (Sørensen et al., 2022) or if the shipping industry will 

preserve its competitive features continuing to create benefits for all participants.  

 

7. Conclusions 

This study investigates China’s industrial effects on regional freight markets of dry bulk 

shipping segment, employing weekly data over the period 2014 to 2024. In doing so we perform 

TVP-VAR and QVAR frequency connectedness methodologies, which are able to capture shocks 

to economic maritime activity that affect variables at different frequencies. 
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The innovation of our study is that it is the first to focus on the impact of the Chinese 

manufacturing sector on regional freight rates, by examining frequency asymmetric spillover 

effects, both in the long and short run period. Our empirical investigation shows strong 

interconnectedness between China’s industrial activity and regional freight rates, indicating a clear 

linkage between China’s business cycles and shipping cycles. In line with shipping economic 

theory, the results demonstrate that the spillover effects of China’s industrial activity significantly 

intensify over the long term. Robust spillovers are also observed during major macroeconomic 

disruptions, such as the COVID-19 pandemic, the war in Ukraine, and the energy price crisis. 

Specifically, we find that negative shocks, namely shocks in the recession phase of the business 

and shipping cycles, are transmitted more intensively in the long run period, reflecting their 

stronger persistence and the long run system's vulnerability. On the other hand, positive shocks are 

transmitted more intensively in the short run period, reflecting short term freight market 

adjustments and interventions of the governments, through fiscal and monetary policy, to ease the 

impact of the negative effects of the pandemic and geopolitical tensions. Policy recommendations 

underscore the structural significance of China’s manufacturing sector in regional supply chains. 

Strategies to enhance resilience include diversifying export markets and upgrading logistics 

infrastructure to mitigate systemic risks. 

The strong China’s industrial effects on regional freight rates indicate an increase in the 

country’s maritime power, which is evidence in favor of a multipolar international system. Will a 

more balanced distribution of maritime power lead to changes in the competitive features of the 

shipping industry? Understanding these noneconomic effects of industrial policy on shipping 

markets poses great challenges for the future and is, undoubtedly, a field for further research. 
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